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AMR

Abstract Meaning Representation
• Compact encoding of sentential semantics as a DAG
• Independent of any syntactic analyses
• Hand-annotated gold data: some free, most LDC
• The “Penn Treebank of semantics” (Banarescu et al., 2013)
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Example

• “I had let my tools drop from my hands.”
(The Little Prince Corpus, id: lpp_1943.355)

(l / let-01
:ARG0 (i / i)
:ARG1 (d / drop-01

:ARG1 (t / tool
:poss i)

:ARG3 (h / hand
:part-of i)))
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PENMAN Notation

AMR is encoded in PENMAN notation
• l is node id, let-01 is node label, :ARG0 is edge label
• Bracketing alone forms a tree

• Node ids allow re-entrancy
• Inverted edges (:part-of) allow multiple roots

(l / let-01
:ARG0 (i / i)
:ARG1 (d / drop-01

:ARG1 (t / tool
:poss i)

:ARG3 (h / hand
:part-of i)))
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Triples

PENMAN graphs translate to a conjunction of triples

(l / let-01 instance(l, let-01) ^
:ARG0 (i / i) ARG0(l, i) ^

instance(i, i) ^
:ARG1 (d / drop-01 ARG1(l, d) ^

instance(d, drop-01)
:ARG1 (t / tool ARG1(d, t) ^

instance(t, tool) ^
:poss i) poss(t, i) ^

:ARG3 (h / hand ARG3(d, h) ^
instance(h, hand) ^

:part-of i))) part-of(h, i)
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Back to AMR

What is AMR beyond PENMAN graphs?
• AMR is the model, PENMAN the encoding scheme
• Made up of “concepts” (nodes) and “relations” (edges)
• Verbal concepts taken from OntoNotes (Weischedel et al., 2011), others
invented as necessary

• Defined by the AMR Specification1 and annotator docs
• Mostly finite inventory of roles (except :opN, :sntN)
• Constraints (e.g., no cycles), and valid transformations (inversions, reification)

1https://github.com/amrisi/amr-guidelines/blob/master/amr.md
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Smatch

Smatch is the prevailing evaluation metric for AMR
• For two AMR graphs, find mappings of node ids
• Choose the mapping that maximizes matching triples
• Calculate precision, recall, and F1 (the Smatch score)
• Example:

(s / see-01 (s / see-01
:ARG0 (g / girl) :ARG0 (g / girl)
:ARG1 (d / dog :ARG1 (c / cat))

:quant 2))

Left: 7 triples, Right: 6, Matching: 5
Precision: 5/7 = 0.71; Recall: 5/6 = 0.83; F1 = 0.77 7



What’s the Problem?

AMR has alternations that are meaning-equivalent according to the specification
• Some idiosyncratic role inversions, e.g.:

• :mod <-> :domain
• :consist-of <-> :consist-of-of

• Edge reifications, e.g.:
(a / ... :cause (b / ...)

…can reify :cause to…
(a / ...

:ARG1-of (c / cause-01
:ARG0 (c / ...)))

• These result in differences in the triples, and thus the Smatch score
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What’s the Problem?

There is no partial credit for almost-correct triples

Gold Hyp1 Hyp2
(c / chapter (c / chapter (c / chapter)

:mod 7) :quant 5)

CAMR JAMR AMREager
(c / chapter (c / chapter (c / chapter

:quant 7) :li 7) :op1 7)

• Getting the role wrong (CAMR, JAMR, AMREager) gets the same score as
getting both the role and value wrong (Hyp1)

• Omitting the relation altogether (Hyp2) yields a higher score than having an
incorrect relation. 9



What’s the Problem?

Some ”equivalent” alternations are invalid graphs

Gold Bad
(c / chapter (c / chapter

:mod 7) :domain-of 5)

• If :domain-of is inverted, then 5 must be a node id, but it is a constant.
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Normalization

Question: Can we address these problems in evaluation by normalizing the
triples?

Meaning-preserving normalization:
• Canonical Role Inversion
• Edge Reification

Meaning-augmenting normalization:
• Attribute Reification
• Structure Preservation
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Canonical Role Inversion

Replace non-canonical role with canonical ones
• :mod-of -> :domain
• :domain-of -> :mod
• :consist -> :consist-of-of
• etc.
• (Also useful for general data cleaning)
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Edge Reification

Always reify edges

(d / drive-01
:ARG0 (h / he)
:manner (c / care-04 <---------.

:polarity -)) <-----+-----------------------.
| |

(d / drive-01 | |
:ARG0 (h / he) | |
:ARG1-of (m / have-manner-91 <-' |

:ARG2 (c / care-04 |
:ARG1-of (h2 / have-polarity-91 <-'

:ARG2 -)))))
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Attribute Reification

Make constants into node labels

(c / chapter (c / chapter
:mod 7) --> :mod (_ / 7))
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Structure Preservation

Make the tree structure evident in the triples
(using the Little Prince example, adding TOP relations)

(l / let-01
:ARG0 (i / i :TOP l)
:ARG1 (d / drop-01 :TOP l

:ARG1 (t / tool :TOP d
:poss i)

:ARG3 (h / hand :TOP h
:part-of i)))
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Experiment Setup

Test the relative effects of normalization on parsing evaluation for multiple
parsers
• Use the Little Prince corpus with gold annotations
• Parse using JAMR (Flanigan et al., 2016)
• Parse using CAMR (Wang et al., 2016)
• Parse using AMREager (Damonte et al., 2017)
• Normalize each of the four above (various configurations)
• Compare:

• Gold-orig × { JAMR-orig, CAMR-orig, AMREager-orig }
• Gold-norm × { JAMR-norm, CAMR-norm, AMREager-norm }
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Results

Normalization Score
System I A R S P R F

JAMR

0.60 0.56 0.58
✓ 0.60 0.55 0.57

✓ 0.61 0.56 0.58
✓ 0.63 0.57 0.60

✓ 0.59 0.55 0.57

CAMR

0.67 0.56 0.61
✓ 0.67 0.56 0.61

✓ 0.67 0.55 0.60
✓ 0.70 0.57 0.63

✓ 0.68 0.58 0.63

AMREager

0.57 0.52 0.55
✓ 0.57 0.52 0.55

✓ 0.57 0.53 0.55
✓ 0.61 0.57 0.59

✓ 0.59 0.54 0.56
19



Results

Normalization Score
System I A R S P R F

JAMR

0.60 0.56 0.58
✓ ✓ 0.63 0.57 0.60

✓ ✓ 0.64 0.57 0.60
✓ ✓ ✓ 0.64 0.57 0.60
✓ ✓ ✓ ✓ 0.61 0.56 0.59

CAMR

0.67 0.56 0.61
✓ ✓ 0.69 0.57 0.63

✓ ✓ 0.70 0.56 0.62
✓ ✓ ✓ 0.70 0.56 0.62
✓ ✓ ✓ ✓ 0.70 0.58 0.63

AMREager

0.57 0.52 0.55
✓ ✓ 0.61 0.57 0.59

✓ ✓ 0.60 0.58 0.59
✓ ✓ ✓ 0.60 0.58 0.59
✓ ✓ ✓ ✓ 0.61 0.57 0.59
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Discussion

• Normalization slightly increases scores on this dataset
• mainly due to partial credit

• Sometimes it does worse
• making available previously ignored triples
• more triples -> larger denominator in Smatch

• Effects on a single system are unimportant
• Rather, relative effects for multiple systems is interesting
• Although, relative effects on this experiment are slight

• Role inversion harmed JAMR but not others
• AMREager improves compared to others

• Next step: try on other corpora (Bio-AMR, LDC, …)
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Discussion

• Normalization is not promoted as a postprocessing step (in general)
• Rather as preprocessing to evaluation
• Thus it allows parser developers to take risks
• Although reduced variation may benefit sequence-based models
• Similar procedures possibly useful for non-AMR representations (e.g., EDS,
DMRS)
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Thanks

Thank you!

Software Available:

• Normalization
https://github.com/goodmami/norman

• PENMAN graph library
https://github.com/goodmami/penman
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