Egad: Efficiently Evaluating
and Extracting Errors
from Deep Grammars

Michael Wayne Goodman

A thesis submitted in partial fulfillment of
the requirements for the degree of

Master of Arts

University of Washington

2009

Program Authorized to Offer Degree: Linguistics

University of Washington
Graduate School

This is to certify that I have examined this copy of a master’s thesis by

Michael Wayne Goodman

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final
examining committee have been made.

Committee Members:

Emily M. Bender

Francis Bond

Date:

In presenting this thesis in partial fulfillment of the requirements for a master’s degree at
the University of Washington, I agree that the Library shall make its copies freely available
for inspection. I further agree that extensive copying of this thesis is allowable only for
scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Any
other reproduction for any purpose or by any means shall not be allowed without my written
permission.

Signature

Date

University of Washington

Abstract

Egad: Efficiently Evaluating
and Extracting Errors
from Deep Grammars

Michael Wayne Goodman

Chair of the Supervisory Committee:
Assistant Professor Emily M. Bender
Department of Linguistics

A useful property of deep grammars, such as those based on HPSG, is the ability to generate
as well as parse sentences. Much effort is put into increasing the parsing coverage of a
grammar, but less attention is given to its ability to generate. In this thesis, I introduce a
system (Egad) that considers both the parsing and generation output of a grammar, then
uses that information to find areas where performance differs between the two. Egad can be
used to analyze the overall generation performance of a grammar—such as how well it can
produce paraphrases—as well as, perhaps more importantly, finding probable errors in the
grammar. Using Egad, we were able to increase the generation coverage of the Japanese

grammar Jacy nearly 20%.

TABLE OF CONTENTS

Page

List of Figures iii
List of Tables e iv
Glossary e v
Chapter 1: Introduction 1
1.1 Motivation e 2
1.2 Initial State of the Grammar 2
1.3 Goals e 2
1.4 Thesis Overview 3
Chapter 2: Literature Review 5
2.1 Error Mining for Parsing o)
2.2 Error Mining for Generation L L L o 6
2.3 Work on Semantics 7
2.4 Representation of Grammar Rules 7
2.5 Summary ... L e e 8
Chapter 3: Methodology 9
3.1 Resources e 9
3.2 Process e 11
3.3 Notes on Performance 12
3.4 Summaryo e e e e 12
Chapter 4: Item Characterization 14
4.1 Characteristics e 14
4.2 Results of [tem Characterization 28
4.3 SUMMATY . . . o v et e e e 29

Chapter 5: Rule Association 31

5.1 Rule Paths o 31
5.2 Model Building Lo 32
5.3 Finding Rule Associations 34
5.4 Rule Association Results L 35
B SUummary e e e e 37
Chapter 6: Error Mining« . e 38
6.1 Mining Problematic Rules 38
6.2 Item Searching 41
6.3 Summary e 42
Chapter 7: Grammar Changes 43
7.1 Overgenerating Topic Markers 43
7.2 Incorrect Tense Constraints oo 44
7.3 Unquantifiable Nouns 45
7.4 Noun Specification with ® no 45
7.5 Overgenerating Pronounso 46
7.6 SUMMATY o v ot e e e e e 47
Chapter 8: Analysis 48
8.1 Coverage Analysis 48
8.2 Realization Analysis 49
8.3 Concerning Paraphrases 50
8.4 Summary . . .o 50
Chapter 9: Conclusion 53
9.1 Future Work 53
9.2 Avwailability 54
9.3 Conclusion e 54
Bibliography 25
Appendix A: Problematic Characteristics 59

ii

Figure Number

1.1

4.1
4.2
4.3
4.4

5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7

6.8
6.9
6.10

7.1
7.2
7.3

8.1
8.2
8.3

Al
A2

LIST OF FIGURES

Page
Initial grammar statistics Lo oo 3
Example characteristic pattern for a parsed sentence. 16
Example characteristic pattern for a generated sentence. 16
Parse Tree for “E X #0\ H & 35 T WA 23
Textual format of the derivation tree in Figure 4.3 23
Derivation tree for “fZ#I1ZHFEHBE D hyvavy, ™ oL 33
Search patterns for items that can or cannot generate. 39
Search patterns for items that are reproducible or irreproducible. 39
Search patterns for items that differ or don’t differ in semantics. 39
Search patterns for parsed and generated items that have non-net semantics. 40
Search patterns for items of all values of reproducibility and paraphrasability. 40
grep search for realizations with different lexemes than the original. 41
grep search for realizations with differing derivation trees, but the same set
of rules as the original. 41
grep search for items that are irreproducible and paraphrasable. 41
grep search for ungenerable items containing the word ¥ kare “he”. 42
grep search for realizations with differing MRSs and using te-adjunct lexemes. 42
Original semantic hierarchy for topic relations in Jacy 44
Updated semantic hierarchy for topic relations in Jacy 44
Noun compound with quantification by lexical-rule 45
Initial and updated absolute general statistics for Jacy 51
Initial and updated relative general statistics for Jacy 51
Initial and updated comparative statistics for Jacy 52
Derivation Tree for “fy n*5 T I b - 727 . . . oo 60
Derivation Tree for “T5 |1 W 5 b - 727 . . o . 60

iii

LIST OF TABLES

Table Number Page
3.1 Distribution of the number of realizations per input item. 13
4.1 Initial comparative statisticso o oL 30
4.2 Initial general statistics o 30
5.1 Trigram rule paths extracted from the tree in Figure 5.1 33
5.2 Example set of labels for the classifier. 34
5.3 Top 10 RPs for ungenerable items 36
8.1 Jacy’s improved general statistics L. 48
8.2 Jacy’s improved comparative statisticso 49

iv

GLOSSARY

CHARACTERISTIC: Some trait or quality extracted from a profile. Characteristics are

used in to describe both entire items as well as their individual parts.

ITEM: An input string along with its sets of parses and realizations, if they are available.

LEXEME: In HPSG grammars, a lexeme is, at least, the pairing of a stem and a lexical
type, referenced to by a lexical identifier. In this work, a “lexeme” usually means the

lexical identifier, since the rest can be looked up in the lexicon.

PROFILE: A set of files produced by the grammar and system profiling tool [incr tsdb()]

after it runs over a corpus.

REALIZATION: A generated sentence, including its surface form, derivation tree, and

semantics.

STEM: Sometimes called the “orthography”, a stem is a string representation of a lexeme.

For example, the stem form of the utsukushii-adj lexeme is J& L \».

ACKNOWLEDGMENTS

There are many who deserve thanks for making this work possible.

Emily Bender, my adviser at the University of Washington, was exceptionally
helpful by providing advice and information during our frequent meetings, even when
we were in vastly different timezones. She also read and commented on multiple
drafts of papers related to the project, including this one. Her patience and active
involvement with all of her students’ projects is commendable, and her keen insight
into the cryptic errors of the LKB is uncanny.

It was Francis Bond’s impressive efforts to make Jacy the best and most compre-
hensive deep grammar of Japanese that provided the impetus for this project. He
invited me to NICT to do this work with him, provided valuable advice and guidance,
helped with coding, testing and debugging the system, and coauthored conference
and workshop papers related to this document. For these generous acts, a wonderful
friendship, and more, I am truly grateful.

Takayuki Kuribayashi graciously and tirelessly provided native-speaker intuitions
for a variety of questions (including an untold number about dogs barking), and
helped with Jacy’s lexical types. The people in the Language Infrastructure Group
at NICT gave advice and audience for presentations about the system. It was a
pleasure working with all of them.

The DELPH-IN community offered support to our numerous software issues. In
particular, Stephan Oepen was a great help with [incr tsdb()], Dan Flickinger with
the ERG, and Rebecca Dridan with RMRS comparison.

Alexander Koller and Stefan Thater were very helpful in getting Utool to work

with our system, and were exceptionally quick to patch a bug we reported during

vi

this time.

The Treehouse members at the University of Washington also gave audience to a
presentation and provided useful feedback.

This work was made possible by NICT, who funded travel and accomodations,
and provided the resources on which the work was produced. Miwa Shiga and the
rest of the staff were a great help in taking care of the paperwork and logistics of my

visit.

vii

Chapter 1

INTRODUCTION

Linguistically motivated analysis of text, such as deep parsing, provides much useful
information for subsequent processing.! Grammars that perform deep parsing are being
used in a variety of applications such as machine translation (Bond et al., 2005; Oepen
et al., 2007) and relation extraction from structured texts (Nichols et al., 2005). The infor-
mation obtained by these grammars, however, is generally at the cost of reduced coverage,
due both to the difficulty of providing analyses for all phenomena, and the complexity of
implementing these analyses. In this thesis I present a method of identifying problems in
a deep grammar by exploiting the fact that it can be used for both parsing (going from
text to its analysis as a semantic representation) and generation (going from a semantic
representation to its realization as text). Since both parsing and generation use the same
grammar, their performance is closely related: in general improving the performance or
cover of one direction will also improve the other (Flickinger, 2008).

The central idea is that we test the grammar on a full round trip: parsing text to its
semantic representation and then generating from it. In general, any sentence where we
cannot reproduce the original text identifies a flaw in the grammar. This can be done
over raw text: there is no need to treebank. This has two advantages: (a) it is possible to
identify problematic phenomena in domains without existing treebanks, and (b) it is possible
to identify which of these phenomena are most widespread, so that grammar development
effort can be focused on the most rewarding problems. In order to train ranking models and
regression test the grammar, it is still important to treebank some text during grammar
development (Oepen et al., 2004). This round-trip testing is an addition to the existing set
of grammar engineer’s tools, not a substitution.

We call our system Egad, which stands for Erroneous Generation Analysis and Detec-

!See Uszkoreit (2002) for more motivation for research into deep linguistic processing.

tion.
1.1 Motivation

The specific motivation for this work was to increase the quality and coverage of paraphrases
produced by the Japanese grammar Jacy (Siegel, 2000a). Bond et al. (2008) showed that by
producing paraphrases of the English side of an aligned corpus (using the English Resource
Grammar (Flickinger, 2000, 2008): the ERG) they could effectively increase the training cor-
pus size and thus improve the performance of a statistical machine translation system. We
want to increase the size of the Japanese side of the corpus for the same reasons. However,
Jacy could not generate new sentences nearly as well as the ERG, and was thus unusable for
the task. We are thus specifically focusing on improving generation coverage in this work.
Improving generation would also greatly benefit X-to-Japanese machine translation tasks

using Jacy.
1.2 Initial State of the Grammar

Figure 1.1 shows the capabilities? of both the ERG and Jacy (for more information on
these two grammars, see Section 3.1). The ERG has 87% parsing coverage, 83% generation
coverage, 70% can generate the original string (i.e. parsing and generation are symmetric),
and 66% can generate different strings (i.e. paraphrases). In contrast, Jacy has 82% parsing
coverage, 45% generation coverage, only 11% can generate the original string, and 44% can

generate different strings. Clearly Jacy has room for improvement.
1.3 Goals

We hope that the end result of this system will allow us easily modify our grammar so it

can reach the following goals over a larger subset of input sentences:

1. Parse the source sentence

2. Generate the parsed sentence

2These statistics are taken from a profile created using the Tanaka corpus as of 2008.08.08.

B ERG
100% B jacy
90% 87
80% - -
70% 20 66
60%
50% 45 44
40%
30%
20% 1
10%
0%
Parsable Generable Reproducible Paraphrasable

Figure 1.1: Initial grammar statistics

3. Generate different sentences when such paraphrases are possible

Also, for the generated sentences, we would like to fulfill the following goals:

1. Generated sentences are grammatical

2. Semantics of generated sentences are subsumed by the input semantics

This means that the grammar will be more robust: it parses and generates more sen-

tences, and will generate more natural sentences.

1.4 Thesis Overview

In Chapter 2, I review the existing literature related to error mining, providing background
for design decisions and situating this work in the field. In Chapter 3, I discuss the resources
we used and overview the processes by which Egad characterizes and error mines a grammar.
Chapter 4 goes into further detail about characterizing a grammar, with explanations of
each feature we look at. I explain in Chapter 5 how we analyze parse tree (more specifically

derivation tree) structure and use pieces of the structure, along with the information from

the grammar characterization stage, to build a model for error mining. Chapter 6 further
discusses the error mining process, including discussion of the kinds of errors Egad can find,
and how to use Egad’s output to locate example items exhibiting the error. In Chapter 7,
I list and discuss several of the errors in Jacy that we were able to find and fix. I provide an
analysis of Egad in Chapter 8 with statistics from Jacy’s original and improved generation
coverage. Finally I conclude in Chapter 9 with future goals for the system and an overview

of the work.

Chapter 2

LITERATURE REVIEW

Grammar developers generally try to improve parsing, rather than generation, coverage,
and as a result most of the existing error mining for deep grammars focuses on parsing

errors. In this section I will review works in error mining as well as other supporting works.

2.1 Error Mining for Parsing

The seminal work in error mining for parsing with deep grammars is van Noord (2004), who
parsed a large corpus and used differences between sentences that parsed and those that
didn’t to identify problematic N-grams. A parsability score is calculated for all N-grams,
depending on how often they occur in sentences that parse compared to the overall distribu-
tion. N-grams with low parsability (“suspicious forms”) identify input that is problematic
for the grammar. This method worked well, but would also give a low parsability score to
N-grams that happened to occur in unparsable sentences, regardless if they were the true
source of the error or not (suspicion-by-association).

Sagot and de La Clergerie (2006) alleviated the problem of suspicion-by-association by
stating that all unparsable sentences have at least one source of error, then working to find
the most likely problematic N-gram. They introduced an iterative, fixed-point algorithm
that considered a suspicious form’s appearance in parsable sentences, the existence of more
than one suspicious form in the same sentence, and the length of each sentence in the
calculation of parsability for each form. Sagot and de La Clergerie also created a novel
graphical user interface for presenting the results of their error mining process.

More recently, de Kok et al. (2009) built on the work of Sagot and de La Clergerie (2006)
to find problematic N-grams of arbitrary length. To alleviate the data sparsity issues that
occur with longer N-grams, they considered an N-gram suspicious if the whole thing had a

lower parsability score than each smaller N-gram it contains. Doing so particularly helped

with multiword expressions.

The vast majority of parsing errors are caused by an inadequate lexicon, so most results
in the previous approaches point out missing lexemes. In contrast, our method only consid-
ers items that have parsed, assumes the parse is correct, then looks for errors that arise in
generation. The hope is that our approach will find more problems in grammar rules rather

than just lexical inadequacies.

2.2 Error Mining for Generation

Gardent and Kow (2007) presented a system to detect overgeneration in a deep grammar.
Their approach was to have a human annotate generated sentences as PASS or OVERGEN-
ERATION, after which their code would find tree structures that are likely associated with
OVERGENERATION—that is, tree structures that only appear in sentences labeled OVERGEN-
ERATION. At this point a human would select a problem and fix it in the grammar. They
then reparse and generate from their corpus, and their code would check to make sure they
didn’t lose any valid (PASS) coverage and that they did indeed reduce the OVERGENERATION
sentences. This iterative process would continue for each problem found. The authors were
able to reduce generation outputs by 70%, most of which was overgeneration. The types
of problems they found included missing constraints, incomplete constraints and incorrect

feature percolation, illicit elementary trees, incorrect semantics, and lexical exceptions.

The method described by Gardent and Kow is similar to ours in that we both look
for grammar internal structures as errors, rather than strings of input text. Unlike their
method, ours cuts the human out of the error detection stage. Rather than manually
labeling items as acceptable or unacceptable, we rely on characteristics obtained from the
items themselves. Further, their method only considers tree structures that appear solely
in the unacceptable items, which could miss errors that can appear in both acceptable and
unacceptable items. Both of our methods rely on humans to make changes to the grammar.
Their method contains logic for tracking the effects of changes on the grammar, whereas

our method relies on the existing [incr tsdb()] system for this task.

2.3 Work on Semantics

The well-formedness of the semantic representation of a sentence can also be used as an
indicator for problems in a grammar. Minimal Recursion Semantics are primarily flat
structures, with labels and handles linking predicate arguments (e.g. semantic roles). In
the MRS for a sentence, the predicates and the links between them form a network, or
graph. Flickinger et al. (2005) proposed that nearly all well formed sentences have semantic
structures that form a full net. They found eleven rules in the ERG that consistently
produced non-net sentences, and that every one of those rules contained an error in its
implementation.

Another approach is that of Dickinson and Lee (2008) who, rather than looking for
common structures in unparsable sentences, looked for anamolous annotation patterns in
the semantic annotation of a corpus. The method is called the “variation N-gram method”.
It creates a probabilistic model of the likelihood that a particular argument structure (the
semantic annotation) is accurate given the verb and some of its context. They ran their
system over PropBank (Palmer et al., 2005), a version of the Penn Treebank augmented with
semantic role labels, and found that 69% of a sample of 100 items flagged as deviant in their
semantic annotation also contained syntactic annotation errors. While annotation errors
have different sources and are quite different from errors in the output of a deep grammar,
we can still learn a couple of things from this method. First, the anomaly detection logic
could be useful for our approach as well, since considering the context around a possible error
can help avoid false positives. Second, it is not coincidence that semantic errors accompany
syntactic errors, and we find this observation to be true in our system, as well (see Section

4.1.9 for an example).

2.4 Representation of Grammar Rules

Toutanova et al. (2004) introduced a method of representing tree structures as non-branching
paths of applied grammar rules. Their motivation was for parse ranking, for which they
noted considerable gains using their method, but we think the approach is applicable for

us as well. Toutanova et al. created leaf projection paths, which, for each leaf node in a

derivation tree, is a direct path from the leaf to the root node. The authors did this because
many machine learning algorithms require a vector of data of fixed dimensionality, and
derivation trees do not easily fit this mold. Therefore they create vectors from sequences of
rule applications in a derivation tree.

For our system, we use n-gram subsequences from these leaf projection paths. We do
this, rather than using the full paths, because we believe that the source of a grammar error
is likely to be contained in a small sequence of rules (most likely just one or two), and not
the whole leaf-to-root sequence. If we use the full paths, any nodes that do not represent
errors would become noise and pollute the model. Because we are just interested in short
substructures from the derivation trees, we could also look at sibling relationships in the
trees instead of just parent-child relationships, but we do not explore that possibility in this

work.
2.5 Summary

I have reviewed the mainstream approaches to error mining for parsing as well as work
on the detection of overgeneration. I also reviewed work others have done on using well-
formedness of semantics and anomalies in semantic annotation for error detection. A method
of representing derivation trees as multiple vectors inspired our approach to representing
grammar errors with these substructures of trees.

Compared to some of the methods of error detection reviewed in this chapter, our method
sacrifices some framework independence in exchange for more informative results. Rather
than reporting N-grams of input text likely causing problems with a grammar, we present the
actual grammar rules thought to be erroneous. Also, unlike previous work in the detection
of overgeneration, we fully automate the error detection process so the user does not have to
spend time annotating output. This allows the user to spend their time implementing fixes
for the grammar, and since nothing needs annotation, this also allows the error detection

process to analyze a large number of items.

Chapter 3

METHODOLOGY

The error mining method described in this thesis is not standalone—it requires, at least,
an implemented grammar, a parser and generator, and a corpus of input items in order
to create the raw data (e.g. derivation trees, MRS semantics) that will be used by Egad.
In this chapter I will cover the various tools and resources we use with Egad in Section
3.1, as well as provide a high-level overview of the item characterization and error mining
processes in Section 3.2. T also briefly discuss performance issues relating to the parsing and

generation process in Section 3.3

3.1 Resources

To ensure that the error mining process is language independent we tested it on two gram-
mars: Jacy (Siegel, 2000a), a Japanese grammar and the English Resource Grammar (ERG)
(Flickinger, 2000, 2008). Both grammars are from the DELPH-IN! group, are written in
the Head-driven Phrase Structure Grammar (HPSG) (Pollard and Sag, 1994) framework,
and use Minimal Recursion Semantics (MRS) (Copestake et al., 2005) for their semantic
representations. The ERG is more mature, having had more developer time than Jacy.
They are both comparable in complexity, and share many core analyses. They provided
some of the motivation for the LinGO Grammar Matrix (Bender et al., 2002): a skeleton of
grammatical and lexical types that constitutes a possible formal backbone for a large scale
grammar of — in principle — any language.

We use the efficient PET parser (Callmeier, 2000) for parsing and the LKB (Copestake,
2002) for grammar development and generation. Parsing uses a highly optimized chart-

based algorithm. Generation is also chart-based with various optimizations (Carroll and

!Deep Linguistic Processing with HPSG Initiative — see http://www.delph-in.net for background infor-
mation, including the list of current participants and pointers to available resources and documentation.

10

Oepen, 2005).

Generation results can legitimately differ from parsing in at least three principled ways:
(i) It is normal to select different subsets of the grammar for parsing and generation. For
parsing, an additional set of robust rules are allowed, such as rules for the English gram-
mar than allow subject-verb agreement mismatches. (ii) In phenomena where the grammar
makes no semantic distinction between two constructions, they will both be allowed in gen-
eration. For example in Jacy, SOV (subject-object-verb) and OSV sentences will typically
have the same semantics and both will be generated from the same input. (iii) The grammar
writer can also block lexical variants in generation. For example, Jacy can parse two kanji
variants for kirei “pretty” (&%, #@RE) in addition to the hiragana version (& f1\Y), but
only generates the hiragana.

Since generation with HPSG grammars constructs sentences from MRS semantic rep-
resentations, one optimization for the generation process only inserts lexical entries with
semantic contribution (i.e. an MRS predicate) into the generator chart. Note that all words
in a realization must first exist as lexical entries on the generator chart. Lexical entries
lacking a semantic predicate will only be inserted into the chart if a “trigger rule” defined
by the grammar developer matches a certain context in the MRS. For example, in Jacy all
morphemes are treated as lexemes. The lexeme for the perfective verb-final morpheme 7=
ta contains no semantic predicate, so it must be inserted with a trigger rule. A rule inserts
this lexeme if there exists a verb marked as being past-tense? in the MRS.

We use [incr tsdb()] (Oepen and Carroll, 2000) for performance profiling: parsing and
generating from test-suites and storing their parse trees, MRS, and surface forms in profiles.
In this thesis, I will refer to a corpus item as the collection of an input sentence, its parse
information (parse trees, MRS), and its generation information (generated trees, MRS,
surface forms).

We use the Tanaka Corpus (Tanaka, 2001) for both our English and Japanese input
sentences. The Tanaka Corpus was created by Professor Yasuhito Tanaka, who asked his

students to collect 300 English-Japanese translation pairs each. The original corpus had a

2“Past-tense” is a misnomer, since it marks perfective aspect and not tense, and is likely a result of using
labels borrowed from another system or grammar.

11

significant amount of errors (misalignments, spelling and grammar errors, etc.) and dupli-
cates, but much work has been done to clean it up. The work to clean up the corpus is
ongoing, fueled largely by volunteers. Many of the sentences were taken from books, songs,
and other sources, so there are many domains represented. The average sentence length
(i.e. word-count) for the English side of the corpus was 7.72 words, and the longest was 45

words. The version of the corpus we used contained nearly 150,000 translation pairs.

3.2 Process

The error mining process consists of three stages of processing, of which Egad does the
latter two. The first stage is creating parsing and generation profiles from a corpus. This is
achieved with the PET parser for parsing, the LKB for generation, and [incr tsdb()] for the
management of profiles. The second stage is to determine characteristics (see Chapter 4)
of the parsed and generated items. The third and final stage finds the grammar rules most
predictive of certain characteristics.

Parsing and generation with HPSG grammars uses the same grammar rules for both
directions, although there may be additional rules affecting only one direction. First, input
text is parsed with the grammar, producing derivation trees and MRSs for each parse.
Generation then uses the MRSs to construct derivation trees and output text sentences.
While it is possible to produce realizations from each MRS of multiple parses for the same
input sentence, Egad only looks at realizations produced from the first parse. This will be
the highest ranked parse if there is a parse ranking model.

To characterize the parsed and generated items, Egad uses both the parsing and gen-
eration profiles. This step is fairly straightforward, as it only requires the information from
each individual item to determine that item’s characteristics. These characteristics are
useful for analyzing the performance of a grammar, but are also an integral part of the
rule-association stage and thus for error-mining. Most characteristics are trivial and easily
observable by looking at the parsing or generation profile, but others are difficult for humans
to quickly discern. For example, it is time-consuming for a human (and occasionally for a
computer, when the complexity is high enough) to determine if two MRSs are equivalent.

The resulting characteristic summary produced by Egad is easily processable by humans

12

and computers both.

In order to extract rules that appear to cause grammar errors, Egad constructs a sta-
tistical model where n-grams of grammar rules (rule-paths; see Section 5.1) from an item
predict that item’s set of characteristics. After collecting these rules-to-characteristics rela-
tions over the whole corpus, the model learns which rule-paths are associated with particular
patterns of characteristics. The grammar developer then looks for rules that are, according
to the model, strongly associated with an undesirable characteristic. See Section 5.2 for

more information on the building of this model.

3.3 Notes on Performance

The user can place limitations on the parser and generator to compensate for machine
performance or to manage run time. For our tests, we limited the parser to use no more
than 50,000 edges (rule-applications in the search space of all parses). We limited the
generator to use no more than 10,000 or 20,000 edges, we only collect the first 5 realizations
per input item. If the grammar has a generation ranking model, the first 5 realizations will
also be the top 5, but currently Jacy does not have a generation ranking model, so it is
merely the first ones the generator produces. For each item, the generator only uses the top
parse (highest ranked of all valid parses) as input. For the initial version of Jacy (prior to
the changes listed in Chapter 7), Table 3.1 shows the distribution of realizations per input
item. The data for this table came from 7,500 input items, of which 6,115 parsed. Also
note that it is possible for the generator to run out of memory or timeout before reaching a
realization, resulting in no realizations being returned for a given item, even if the grammar

theoretically allows them. Unfortunately I don’t have numbers for these kinds of errors.
3.4 Summary

In this chapter I have described the tools and resources Egad uses, and briefly covered the
process by which items are parsed, generated, characterized, and how rules are associated
with characteristics. The parser (PET), generator (LKB), and grammar (Jacy) are all in
the DELPH-IN family of tools and grammars, and, along with sentences from the Tanaka

Corpus, supply Egad with the data it works with. There are a variety of reasons why

13

Table 3.1: Distribution of the number of realizations per input item.

Generations Count Percent.
0 2,709 44.30%.
1 147 2.40%.

2 220 3.60%.
3 73 1.19%.
4 246 4.02%.
5 2,720 44.48%.

Total 6,115 ~100.00.

generation is not always symmetric with parsing, and Egad does two main steps to find
such asymmetries in the grammar: first it analyzes and reports characteristics detailing the
parses and realizations, and second it creates a statistical model associating grammar rules

to these characteristics. These associations form the foundation of error mining with Egad.

14

Chapter 4
ITEM CHARACTERIZATION

The first thing that Egad does with parse and generation profiles is determine charac-
teristics from each item. Most of the information used in this determination already exists
in the profile, but it is spread across different files or not immediately usable. For instance,
the set of lexemes in a parse or realization is contained in the derivation tree of an item.
This stage of Egad’s processing extracts these data and uses them to determine charac-
teristics both for items as a whole (parses and realizations), as well as in comparing each
realization to the parse whence its semantics originated. In this chapter I will describe the
various characteristics Egad reports and, using these characteristics, provide an analysis of

the items and grammar performance over our test corpus.
4.1 Characteristics

From both the parsing and generation profiles, we are able to extract a handful of charac-
teristics that can tell us something about the grammar used to produce those profiles. T will
now briefly list the characteristics Egad determines, and they will be described in greater

detail below. For input items, we look at those that are:

e Parsable

e Generable

e Reproducible

e Paraphrasable

Looking at individual generated sentences, we also analyze ways in which realizations

can differ from the original sentence, including:

15

The set of lexemes

The derivation tree

The set of rules used

The surface string

The MRS

Finally, there is one characteristic that applies to both parsed and generated sentences.

It is determined by the external program Utool.
e The MRS does not form a net

After we determine all of these characteristics, we output a formatted and easily search-
able string representation of the whole set, called a characteristic pattern, or CP. The

possible values! for each characteristic are as follows:

0 There was no problem or difference observed

1 There was a problem or difference observed

— The characteristic is not applicable for this type of item.

? The value of the characteristic could not be accurately determined.

An example of a CP for a parsed sentence is given in Figure 4.1.

The first four numbers can be read, in order, as “parsable, generable, not reproducible,
paraphrasable”. The following five characteristics do not apply to a parsed item, so they
are simply dashes. The final one in the CP means that the parse’s MRS is ill-formed. An

example CP for a generated sentence is given in Figure 4.2.

n early versions of Egad, we considered each characteristic as representing an error. Thus, the reason
why “0” means parsable, generable, etc. is because they used to mean unparsable, ungenerable, etc. In
this previous system “0” meant “false” or “not observed,” and “1” meant “true” or “observed.”

16

Figure 4.1: Example characteristic pattern for a parsed sentence.

--—— 01110 O

Figure 4.2: Example characteristic pattern for a generated sentence.

In this case, the first four values are dashes as they do not apply to generated sentences.
The next five can be read as “Has the same lexemes, a different derivation tree, a different
set of rules, a different surface form, and the same MRS as the original parsed item”. The
final zero means that the MRS is well formed.

Below we further define these characteristics, explain how they are determined, provide

example sentences, and summarize their role in error detection.

4.1.1 Parsable

We find this characteristic by looking at a parsing profile and seeing which input strings
do or do not have at least one corresponding complete parse. Once we find an item that
is unparsable, there is little other information that can be gathered about it for further
processing with Egad. Recall that Chapter 2 described what others have done to locate
parsing errors, but, unlike those approaches, our system requires derivation trees to find
errors. We have considered using partial parses to find common tree structures in unparsable
sentences, but this is delegated to future work. (1) shows a sentence that was not parsed
by the grammar.
(1) <o Fi T, HLIK I Wz BEFT LD Eorm

sono jiken-de, ayauku kare-wa inochi-wo otosu tokoro datta.
that accident-INST, nearly = him-TOP life-Acc lose about to was.

“The accident almost cost him his life.”

Although our main motivation is to improve generation, looking at unparsable items
can still be useful. If a source sentence cannot be parsed, then the grammar would also be

unable to generate that sentence given its semantics. Granted, the grammar may be able to

17

generate different sentences that have the same semantics, but the source sentence is often
produced by a human and is a natural way of expressing the meaning represented by the
semantics, so it is beneficial to ensure that it can be parsed.

It is worth noting that 6% of a sample of 100 unparsable sentences in the Japanese
corpus were perhaps unparsable for reasons other than errors in the implemented grammar.
Of those 6 sentences, 2 were borderline grammatical, 1 was ungrammatical, and 3 were not
single sentences (e.g. more than one sentence, bylines, etc.). This classification of parsing
errors mirrors that found by Baldwin et al. (2005), i.e. parsing errors due to missing lexical
entries, missing grammar constructions, ungrammatical input, and extragrammatical input.
Similarly, for the English corpus, we found that 16% of a sample of 100 unparsable sentences
had such problems (10 were ungrammatical, 1 was borderline grammatical, and 4 were not
single sentences). For most of these items, we could say that the grammar did well in not
parsing them. Also of note is that some of the Japanese unparsable items were grammatical,
but not segmented properly by the morphological analyzer Chasen (Matsumoto et al., 2000),

which might have caused the failure.

4.1.2 Generable

For sentences the grammar was able to parse into MRS, we would hope that it could at least
generate the same sentence, but sometimes it does not generate anything at all. It is easy
to detect these items—simply look for those that appear in a parsing profile, but not in the
generation profile. However, we do not have any information about the failed generation
process.

There are at least two pieces of information from the parsing profile that may prove
useful: the derivation tree and the MRS. We can look at the derivation trees and MRSs from
items that can generate and those that cannot, and attempt to pinpoint which individual
rules or predicates are strongly associated with generability. In this thesis, I do this method
for derivation trees, but not MRSs.

Consider (2). This item did not generate because the quantification rule was unable

to be applied to the phrase 3 L san-biki “three (animals)”. To be more specific, the

18

quantification rule was a lexical rule, and thus should only be applied on lexemes, not
phrases. The parser, however, allowed this constraint to be ignored, while the generator
did not. If the sentence had an explicit subject (say, 3/L D K h3IRk 2 % 3 biki no inu ga
hoeru “three dogs bark” or K h3JLIKk 2 % inu ga 3 biki hoeru “three dogs bark”) then
the single lexeme K inu “dog” could be quantified without any problems and the sentence
would generate properly. But nevertheless, this quantification issue is a grammar bug, and
the generator was behaving properly. Quantification should be a phrasal rule, rather than
a lexical rule.
(2) 3L p k2 5.

san-biki-ga hoeru.
three-CL-NOM bark.

“Three (animals) bark.”

Another possible reason for ungenerability is that the generator ran out of memory.
Sometimes the solution is just to process the items on a machine with more memory (par-
ticularly for very long or complicated sentences), but the fact that it fails in such a way
suggests that the rules may not be properly applied (or if they are, they could be imple-

mented in an inefficient or problematic way).

4.1.3 Reproducible

Reproducibility means that, using the semantics of a parsed sentence, the generator can
realize the exact same sentence as was parsed. In other words, the parse and realization
are symmetric. If we can parse a sentence and generate from the resulting semantics, but
cannot generate the sentence we initially parsed (see Section 4.1.8 for how we judge if the
sentences are equal), then there are several possible culprits for this asymmetry. Note that
when determining if a grammar produced the same sentence, we only compare the sentence’s
surface form. It might be more correct and informative to also compare the derivation trees
and semantics, but we did not explore that possibility in this version of Egad.

The first possible reason for irreproducibility is that the original lexemes are not being
selected (see Section 4.1.5 for discussion on this phenomenon). (3) is an example of such a

sentence:

19

(3) Z/3x3 by ETH dins 7
tabako-ga totemo furukat-ta.
cigarettes-NOM very old-PERF.

“The cigarettes were very old.”

Given the semantics for this sentence, Jacy could generate three variants (hiragana, katakana,
and kanji, respectively) for tabako “cigarette”: 7=1£ 2, ¥ 32, and %L, Japanese in par-
ticular often has several ways to write the same word, and in the Jacy grammar each form
has its own lexical entry. When there are several competing lexemes, as in this case, the
preferred form (likely the same as what was parsed) might not be generated first. Since we
are only considering the first 5 realizations, if the preferred form does not show up in those
5, then Egad will consider them to not have been generated at all. This is the reason that
(3) was labeled as having different lexemes in the parsed and generated sentences.

A second possibility for irreproducibility is also lexical, in that the semantics for a
parsed word may be shared among several different words (this is distinct from the previous
possibility, which was different forms of the same word). Pronouns are an excellent case in
point. In Jacy, pronouns always have the semantic predicate _pron_n_rel, and use additional
properties (person, number, or gender) to discriminate between them. Some pronouns
have some of these properties unspecified, and their semantics can therefore select any
similarly unconstrained pronouns. For instance, the Japanese pronoun H 4} jibun “self”
is underspecified for person, number, and gender, so when Jacy generates a sentence from
an item containing this pronoun, it inserts any pronoun as a possible realization. This
overgeneration, as with the lexical variant problem, can easily cause the first 5 realizations
to not be reproductions.

There are other possible reasons for irreproducibility. Insufficient trigger rules may cause
the generation process to fail to insert a lexeme (although this might more often cause a
generation failure). Also, a longer sentence with a larger number of constituents will likely
allow more than 5 word reorderings. There are perhaps other causes we have not considered,
but all of those discussed essentially cause irreproducibility in one of two ways: being unable
to produce the original string, or not producing the original string in the set of realizations

looked at by Egad.

20

4.1.4 Paraphrasable

While being able to generate the original parsed string satisfies the goal of being generable,
if no other strings can be generated then we have failed to satisfy the goal of generating
paraphrases. In Egad, a generated sentence is a paraphrase if the surface form is different
from the parsed sentence, without regarding the derivation trees or semantics. To be more
correct, the surface forms don’t have to be exactly the same, as the user can provide a list
of forms that are to be ignored, such as punctuation.

(4) shows two sentences. (4a) is a realization that is identical to the input (parsed)
sentence, while (4b) is a different string. (4b) has a different word order from the original
sentence, resulting in a different surface form. (4a) is not considered a paraphrase (it is a
reproduction as defined in the previous section), but (4b) is a paraphrase.

(4) a 13 B s A~ 1<

kare-wa maitoshi kaigai-e iku
he-TOP every.year overseas-LOC go

“He goes abroad every year.”

b, 1L i (723 1<
kare-wa kaigai-e maitoshi iku
he-TOP overseas-LOC every.year go

“He goes abroad every year.”

These grammars only produce strict paraphrases. There is no specific functionality to
do sentence compression, lexical replacement, or complex restructuring. Note that these
kinds of changes may take place as long as the semantics of the resulting sentence is the
same as the original. For instance, the pronoun % kare “he” may be replaced with another
pronoun that matches the same constraints (third person, singular, masculine), such as <

WD soitsu “that guy”. Also, as we can see in (4b), simple word reordering can take place.

4.1.5 Lexemes Differ From Original

Turning now to characteristics of generated strings, we start with whether the set of lexemes
used in a realization is the same or different from those used in the parse. This characteristic

is easy to determine. The penultimate nodes on every branch in a derivation tree are always

21

lexeme identifiers, which are unique labels for an entry in the lexicon. Because of this fact,
the set of lexemes for any parse or realization is just this set of nodes (since we are only
looking for lexical equality, we do not need to know more than a lexeme’s identifier). After
we have the sets for both the parse and a realization, we just check to make sure the
(unordered) sets are equivalent.

Lexemes are the basic units from which sentences are formed in HPSG grammars. While

“words”, they are actually much more general. For instance, in

they can be thought of as
the Jacy grammar there are lexemes for some kinds of punctuation (e.g. a comma: .),
morphemes (e.g. perfective inflections -7= -ta or -7 -da?), and some word collocations and
idioms (e.g. I8 maishuu “every week”, :39¢IC osaki ni “before; ahead of; pardon me (for
leaving before you)”). Also, lexemes are pre-inflection, so they are usually the base form
of a word. Despite these differences, a set of lexemes is often a good approximation of the
words used in a sentence.

(5) shows a parsed sentence (5a) and a generated sentence (5b) where the lexemes differ:

(5) a. afi LAF b AL Wy

hanashi-aite-ga hoshii
speaking-partner-NOM want

“(I) want someone to talk to.”
b. &G LMTF »e EL W,

hanashi-aite-ga hoshii
speaking-partner-NoM want

“(T) want someone to talk to.”

These lexemes differ in orthography, but have identical semantics. There is nothing wrong
with either sentence, although it may be a stretch to say that the second is a paraphrase of
the first since they both have the same words and structure. (6), however, is an example of
parsed and generated sentences with different lexemes and semantics.

6) a 9 Bolx-> T I35 T HHhe>

sou osshat-te kudasat-te arigatou
SO say-TE give-TE thank-you

“It’s very kind of you to say so.”

2The difference between -7= -ta and -72 -da is merely phonological and there are no syntactic implications.

22

b. *Z9 Bol%-> T F3Ww S r »
sou osshat-te kudasai arigatou ka
SO say-TE give thank-you Q

* “Please say so thank you?”

The second has both a different inflection for the verb & % kudasaru “give (honorific)”
(which, for the Jacy grammar, means a loss of the separate C te lexeme) and the insertion of
the interrogative sentence ending particle 7> ka. Therefore, there are two lexical differences

in this pair of sentences. Note that the second sentence is also ungrammatical.

4.1.6 Derivation Tree Differs From Original

When we compare derivation trees of parsed and generated sentences, we only look at
phrasal nodes. That is, we exclude two levels of leaf nodes, since those levels are always
stems and lexemes. We also remove some other information from the trees, such as edge
numbers. After cleaning up the trees in this way, we can check if the derivation trees
are identical without being concerned with differing lexemes (after all, we have a separate
characteristic to look for those). Figure 4.3 shows a derivation tree for (7a) with two levels
of leaf nodes in a different color, illustrating those nodes that would not be compared. The
underlined nodes in the derivation tree show which subtrees would be swapped to produce
the sentence is (7b). Note that it is just the underlined nodes and their left subtrees, not
the right subtrees (i.e. head-specifier-rule becomes the right daughter of head_subj_rule).
Figure 4.4 is the textual format of the derivation tree, which is what is actually compared

in Egad. Note that the lexical nodes have been stripped out.

(M a B gy HZE - T3
tori-wa surudoi me-wo mot-teiru
bird-TOP sharp eye-ACC have-STAT

“Birds have sharp eyes.”

b. vy HzZ FII - Tnw3
surudoi me-wo tori-wa mot-teiru
sharp eye-ACC bird-TOP have-STAT

“Birds have sharp eyes.”

(7) is a fine example of where we would like to see differences in derivation trees. In

this example, the reordered second sentence is a valid, if slightly unnatural, paraphrase

23

utterance-root

utterance_rule-decl-finite

head _subj_rule

hf-complement-rule

/\ hf-complement-rule
quantify-n-Irule wa-case-ga /\

| IZ hf-complement-rule

tori_ /\

rel-cl-sbj-gap-rule

0
%z
head-specifier-rule
unary-vstem-vend-rule quantify-n-lrule
\ \

adj-i-lexeme-infl-rule me ystem-vend-rule unary-vstem-vend-rule

surudoi_ ru-lexeme-infl-rule

g t-lexeme-c-stem-infl-rule te-end |
B9/

| < iru-aux-stem

v-tc
Y 5 _v_-te 3
Y-

Figure 4.3: Parse Tree for “& 1 $i\v H 2 35 T W 5”7

(utterance-root(utterance_rule-decl-finite(head_subj_rule(hf-complement-rule

(quantify-n-1rule)) (hf-complement-rule (hf-complement-rule(rel-cl-sbj-gap-rule

(unary-vstem-vend-rule (adj-i-lexeme-infl-rule)) (quantify-n-lrule)))

(head-specifier-rule(vstem-vend-rule(t-lexeme-c-stem-infl-rule))

(unary-vstem-vend-rule (ru-lexeme-infl-rule)))))))

Figure 4.4: Textual format of the derivation tree in Figure 4.3

24

of the original. There are some pairs of minimally restructured sentences that do not
get labeled with this characteristic. For further discussion and an example, see Appendix
A. Since Japanese can license many different word orderings for sentences, most, if not
all, realizations with different derivation trees are grammatical (although often marked).
We have only seen this characteristic exhibited on erroneous items that have some other

characteristic as well, such as different lexemes or different rules, as in (8).

4.1.7 Rules Differ From Original

In addition to the derivation trees, we also look at the unordered set of phrasal rules for a
parse or realization. This helps us distinguish which sentences (from those that have differing
derivation trees) are merely reorderings and which are not. Note that all realizations having
a different set of rules as the parsed sentence will also have different derivation trees.

(7) above did not have any different rules, only different rule structure. (8) does have
a different set of rules. The realization is an ungrammatical sentence, but it has the same
lexemes and, according to Jacy, the same MRS as the parsed sentence. This was easily
found by searching for sentences with differing derivation trees and differing sets of rules.

(8) a. WEH X ETYH FEhrs 12

kinou-wa totemo samukat-ta
yesterday-TOP very cold-PRF

“Yesterday was very cold.”
b. *WEH 1X T #EL 1=

kinou-wa totemo samuku-ta
yesterday very coldly-PRF

* “Yesterday was very coldly.”

4.1.8 Surface String Differs From Original

If there are any differences in the final string of the parsed and generated sentences, aside

from some kinds of punctuation,® then the realization is labeled with this characteristic.

3The range of punctuation that is ignored is defined by the user. For Japanese, we used the list that the

Jacy grammar itself ignores, which includes quotes, periods, asterisks, etc. The reason for ignoring them
is because they are not always generated in the same form as they were parsed, if at all, and we wanted
to avoid these trivial differences.

25

This characteristic is very common, as almost every realization with lexical, rule, or tree
structure differences will also have a surface string difference. In the initial version of Jacy
that we examined, more than half (51.5%) of the realizations exhibited this characteristic,
but this may not be true for different languages or future versions of Jacy.

(3) was found by searching for items that had differing surface forms but the same
lexemes and derivation trees. Notice that the generated sentence has the spurious (and
incorrect) inflection with ¥ ri at the end of the verb Ik 2 hoe “bark”. Affixing rules do
not appear on the derivation tree, which is why we do not catch this error by looking at
differences in the derivation trees. There are other cases where the derivation tree check
fails to detect differences in realizations, and this is discussed in Appendix A.

(9) a. J oy K2 5 ope o 2

neko-ga hoe-kata-ga wakat-ta
cat-NOM bark-method-DAT understand-PRF

“The cat knew how to bark.”

b. *Jfiny K2 J5one s Iz
neko-ga hoeri-kata-ga wakat-ta
cat-NOM barking-method-DAT understand-PRF

* “The cat knew how to barking.”

Since this sentence was generated, it would be parsable as well. It is difficult for a grammar
developer who only tests parsing coverage to anticipate this sort of error. The grammar
developer can test with negative examples (to ensure they don’t parse), but it would be
very difficult and inefficient to try and cover all cases by doing so. Analyzing generation

results allowed us to easily spot this error.

4.1.9 MRS Differs From Original

In comparing MRSs between parsed and generated sentences, we check not if they are equal,
but if they are equivalent. The parsing and generation processes may assign different label
and handle names or order the predicates differently, but the two may still be equivalent.
Finding equivalency then becomes a graph comparison task. We wrote our own code for
this comparison despite the existence of other packages with similar functionality (Dridan

and Bond, 2006) because our task is slightly different from what the developers of the

26

other packages chose to look at. We want to judge if two MRSs are equivalent rather than
calculate a score of dissimilarity.*

Our process of determining equivalency checks that there are the same number and kinds
of elementary predicates, then ensures that the argument labels of one form the exact same
graph structure as the other. Analyzing the graph structure is largely a recursive process—
it looks at each pair of predicates (one from each side being compared), assumes a mapping
of their arguments, then proceeds with each successive predicate unless a conflict appears.
There are a few optimizations we do to speed up this inherently slow process. First of all,
we only compare predicates of the same PRED value, and in order of their number (e.g. we
first look at predicates of which there are only one in each MRS, then two, etc.). The most
time-intensive comparisons involve predicates that are high in number, which tend to be
pronouns (because, in Jacy at least, they are all the same type of predicate: _pron_n_rel)
and quantifiers. We therefore handle quantifiers separately and do some things to lessen
the ambiguity, such as looking at which NPs they affect. We don’t currently do anything
special with pronouns. If we find a valid mapping of arguments covering all predicates, we
halt the comparison routine and say the two MRSs are equivalent.

(10) is an example of a generated sentence whose semantics differs from the original
parsed sentence. In this case, the change can be attributed to a different ordering of phrasal
constituents (both the set of rules and lexemes are the same). The generated structure
created at least two incompatible attachments: the [G] dou “same” attached to [H]% gaka
“artist” instead of KFf\ jidai “era”, and the ' naka “among” attached earlier, resulting
in 3D gaka-chuu-no “those among the painter(s)” instead of [H]ZZDH gaka-no-naka
“among the painter(s)”. In other items, reasons for nonequivalent MRSs include differing
lexemes (see Section 7.1 for discussion of this problem) or different rules (such as a verb

taking a different inflection, e.g. the imperative form instead of the te-form).

4While we should be able to judge equivalency with a score of dissimilarity, the package we tried out
was giving nonzero scores for two MRSs known to be identical. Future iterations of that package may be
useful for our purposes.

27

(10) a Y—F— W HKKERK> @HFED i Ty M L T3
taanaa-wa dou-jidai-no gaka-no naka demo keshhutsu shi-teiru
Turner-TOP same-era-GEN painter-GEN among even excel do-STAT

“Turner stands out among the painters of his time.”

b. ? KX o [6] #wF o TY Y-+ — 3 Bl L Tw3
jidai-no dou-gaka-chuu-no demo taanaa-wa kesshutsu shi-teiru
era-GEN same-painter-among-GEN even Turner-TOP excel do-STAT

? “Turner stands out at those among the same painters of a time.”

Note that in some particularly difficult cases (e.g. those with a large number of pronouns
or nouns, as these introduce many predicates of the same type) we occasionally timeout
before we can finish the equivalency calculation. When this happens, the code reports “?”

instead of “0” or “17, signifying that we did not get an accurate answer.

4.1.10 MRS Not Forming A Net

The final characteristic we looked at and that I discuss in this thesis is that of semantic
well-formedness. We use the Utool program (Koller and Thater, 2005) to analyze the MRS
from a parsed or generated sentence. Before we do that, we must convert the MRS into
Prolog, as Utool is, as of the time of this writing, incapable of reading the default MRS
format output by [incr tsdb()]. Utool’s return value will let us know if the MRS forms a net
or not, if it is logically ill-formed in some other way, or if there was an error reading the
MRS.

In (11), the generated sentence (11b) was determined by Utool to have a non-net MRS:

(11) a. KEB b T—70 = I v e

tarou-ga teeburu-wo kirei-ni fui-ta
Tarou-NOM table-ACC clean-N1 wipe-PERF .

b. * KHE » T—7L & @ Thom i v 2
tarou-ga teeburu-wo kirei-deatta-ni fui-ta
Tarou-NOM table-ACC clean-was-NI wipe-PERF .

“Tarou wiped the table clean.”

As Flickinger et al. (2005) predicted, the generated sentence (11b) is not only semantically
ill-formed, but syntactically erroneous, and should be fixed in the grammar. This prob-

lem occurred because the IZ ni marker in Jacy was not constrained for tense, and during

28

generation it accepted the perfective CTd» - /= deatta “was” (which was likely inserted in
the generator chart by a trigger rule). This problem is further discussed in Section 7.2.
Whether an MRS is a net or not is, as we can see by the discovery of this problem, a useful

characteristic for debugging.

4.2 Results of Item Characterization

We will demonstrate grammar analysis both with individual items and the grammar as a
whole. The former reveals details about individual sentences or types of sentences, while

the latter is useful for gathering statistics about the grammar.

4.2.1 Item Analysis
First we will look at how Egad characterized Jacy’s output for (12).

(12) HO K1z hide &< 5w .
ano ki-wa kore hodo takaku-nai .
that tree-TOP this as tall-NEG

“That tree is not so tall as this.”

The characteristic pattern generated by Egad is 0010 ----- 0. The first four values in this
CP indicate that it can be parsed, generated (evidenced by the two realizations provided
below in (13) and (14)), that it cannot generate the original string, and that it generated
strings other than the original. The next five values are irrelevant for parsing. The final
value indicates that the MRS is well formed. Given this sentence and its realizations, this
CP is accurate.

We will now look at two sentences Jacy generated from the parsed semantics of (12).
First is (13), which Egad gave the CP ---- 01010 O:

(13) Zh 3L o RKIiE L Tw

kore hodo ano ki-wa takaku-nai .
this as that tree-TOP tall-NEG

“That tree is not so tall as this.”

The first four values are now irrelevant, but the next five values are particular to generation.

The first one (0) means that the lexemes are the same (which we can verify by looking at the

29

string or derivation tree). The next two (1, 0) mean that the derivation tree is different, but
the set of rules are the same, which indicates a reordering of constituents. The fourth value
(1) means that the surface form has changed, which is obvious because the constituents
have been reordered. The fifth value (0) means that the MRS is the same as the MRS from
the parsed sentence. The final value (0) means that this generated sentence has well-formed
semantics.
Now consider (14). Egad gave this sentence a CP of ---- 11010 0.
(14) w2 1FE o KT &L v .

koitsu hodo ano ki-wa takaku-nai .
this as that tree-TOP tall-NEG

“That tree is not so tall as this.”

The only difference between this realization and the previous is that the first value is now a
1, meaning that there is a lexical difference. This can be observed by the use of the casual
Z\Y D koitsu “this” instead of the more general Z 11 kore “this”. Both this CP and the

previous one are accurate for their respective generated sentences.

4.2.2 Corpus Analysis

With the kind of information available for individual items, as described in Section 4.2.1, one
can calculate statistics of an entire corpus. For instance, one could output the percentage of
items generated by a grammar that have lexical variation. See Table 4.1 for these kinds of
results from the ERG and Jacy. One could also obtain an estimate of how many items can
produce paraphrases, or how many can generate the original string (a rudimentary statistic
for generation accuracy). These kinds of results for the initial grammar were shown in

Figure 1.1 in Section 1.2, and are presented in tabular form in Table 4.2.

4.3 Summary

This chapter outlined the various characteristics we determine from parsed and generated
items, as well as covering how they can be used to analyze the performance of a grammar.
Full items (parse and realizations) can be characterized as being parsable, generable, repro-

ducible, and paraphrasable, and individual realizations can be compared to the associated

30

Table 4.1: Initial comparative statistics

ERG Jacy
Lexemes differ 50% 90%
Tree differs 69% 2%

Rules differ 64% 51%
String differs 63% 94%
MRSs differs 5% 10%

Table 4.2: Initial general statistics

ERG Jacy
Parsable 87T% 82%
Generable 83% 45%

Reproducible 70% 11%
Paraphrasable 49% 44%

parse for differences in lexemes, derivation trees, rules, surface forms, and MRSs. These
characteristics can be used to analyze single items in order to better understand what is
wrong or different. Many of them collected from a large corpus can be used to get general
performance statistics about a grammar over that corpus. These characteristics will be an

integral part of the error mining process.

31

Chapter 5
RULE ASSOCIATION

Our approach to detecting problematic rules is to train a classifier with the rules as
features and the characteristic patterns (CPs), as labels. Once trained, we use it as though
we were doing feature selection to find the individual features (i.e. rules) that are the most
closely associated with a some CP. Doing this, we can find rules that are most predictive of
a unique CP, or of a range of CPs.

The rules we use as features are not necessarily single rules, but could be paths of rules
from the derivation tree. By using paths of rules, we get information about the parse
structure and the interaction of rules with each other. We use a maximum entropy-based
classifier for this task, and it provides useful results, but we are not claiming it is the only
or best tool for the job.

In this section, I will explain what “rule paths” are and how we obtain them. I will then
describe how they are used to train a classification model. Finally, I explain how we can

use the model to rank grammar rules according to their association with different CPs.

5.1 Rule Paths

The rule paths, or RPs, we extract from the derivation trees are single-node paths. That
is, every time we encounter a branching node in the tree we will extract a separate path for
each branch. Unlike the method we use for tree comparison (described in Section 4.1.6),
we do include lexemes and stems. This is because it may be individual lexemes that cause
problems. We take n-grams of those paths, where the range of n can be configured by the
user. Take, for example, the sentence in (15). Its derivation tree is shown in Figure 5.1,
and the trigram RPs we extract are shown in Figure 5.1. Note that if a branch, from the
top node to the leaf, is not at least depth n, it will not be included in the set of n-grams.

During the development of Egad, there was a bug in the generator where derivation

32

trees of realizations inconsistently used root conditions, whereas the parser always applied
them. This bug has since been fixed, but we included functionality to ignore RPs that
included root nodes, such as the first two RPs in Figure 5.1. We did this because root nodes
were becoming strongly—and incorrectly—associated with parsed items, even though such

a distinction was not encoded into the input grammars.

5.2 Model Building

We build a classification model by using parsed or generated sentences’ RPs as features and
each sentence’s CP as the class label. The grammar developer can provide two parameters
to control the building of the model: the maximum depth, n, of the RPs, and a set of labels
to use. The set of RPs for a sentence includes n-grams over all specified values of n. The
labels are, to be more accurate, regular expressions that specify equivalence classes of CPs.
Using regular expressions allows one to fully specify unique CPs or to generalize over a less
granular range of CPs by leaving certain values underspecified. For example, the grammar
developer can choose to only build a model comparing items that are reproducible to those
that are not. This is not just for more convenient (i.e. less verbose) output, but it can affect
the results as well. Uninteresting characteristics can be a kind of noise, causing potentially
important results to be distributed across multiple CPs, diminishing their score in the model
for the particular characteristic the user is interested in. In addition, the training of the
model is significantly faster when using fewer labels. If the grammar developer does not
provide a set of labels to Egad, then the model will include the fully specified string for all
CPs observed in the profile.

For example, consider again (15). We would provide the list of all valid RPs (those in
Figure 5.1, minus the first two, adding all valid RPs for other values of n) as a set of features
with 01-- ---- 0 (can parse, cannot generate, MRS is valid and forms a net) as the label.

Since it did not generate, we do not add observations for the generated sentences.

We are training over all n-grams in the same model, so we allow the user to weight

(15) flc 1z HEHFY b VLY
kanojo-wa shashin-utsuri-ga ii
she-TOP picture-taking-NOM good .

“She is good at taking pictures.”

utterance_rule-decl-finite

\
hf-adj-i-rule

hf-complement-rule head_subj_rule
kanojo wa-narg /\
Bt X hf-complement-rule unary-vstem-vend-rule

/\ \

quantify-n-lrule ga adj-i-lexeme-infl-rule

| e |

compounds-rule li-adj

/\ ViLy

shashin utsuri_1

HH Y

Figure 5.1: Derivation tree for “fZ#13HFEHG Y hsvavy, 7

Table 5.1: Trigram rule paths extracted from the tree in Figure 5.1

utterance_rule-decl-finite — hf-adj-i-rule — hf-complement-rule
utterance_rule-decl-finite — hf-adj-i-rule — head_subj_rule
hf-adj-i-rule — head_subj_rule — hf-complement-rule
hf-adj-i-rule — head_subj_rule — unary-vstem-vend-rule
head_subj_rule — hf-complement-rule — quantify-n-lrule
head_subj_rule — unary-vstem-vend-rule — adj-i-lexeme-infl-rule

hf-complement-rule — quantify-n-lrule — compounds-rule

33

34

features based on their value of n. For example, the user could weight unigrams more than
any other n-gram if they want to easily find individual lexemes causing problems.
Regarding sets of CPs to analyze, consider the two regular expressions in Figure 5.2.
Using only these two labels, the classifier would look for the most distinguishing features
separating items that can generate from those that cannot. Note that neither of these
regular expressions matches generated items (although the first item in Figure 5.2 matches
generable items), so the classifier would only look at parsed items. Also note that that first
item has a period for the third, fourth, and last characteristics. This implies that we do not
care whether the parsed item could generate the original string, different strings, or if the

MRS forms a net.

Table 5.2: Example set of labels for the classifier.

Note that we are training our model over grammar rules and not n-grams of words in the
input sentence. There are significantly fewer possible n-grams of rules than words, so our
model requires fewer training instances to be accurate and interesting. During our tests,
we noticed mostly stable results whether we used 1,500 or 150,000 input sentences. I would
estimate that the minimum for a decent model is around 1,000 items, since other tests with
200 and 400 items were unstable (i.e. the top results changed significantly between the sets
of 200 and 400 items).

5.3 Finding Rule Associations

After training the model, we have a classifier that predicts CPs given a set of RPs. Egad’s
task is not characteristic prediction, but error mining (recall our motivation in Section
1.1), and for this we would like to present the user with grammar rules causing a certain
condition in the grammar. Therefore, what we want from the model is to discover the RP

most strongly associated with a given CP. The maximum entropy-based classifier we use

35

(Perl’s Al::MaxEntropy package!) provides an easy method to view the score a given feature
has for some label. We iterate over all RPs, get their score, then sort them based on the
score. To help eliminate redundant results, we exclude any RP that either subsumes or is
subsumed by a previous RP. For example, if we return an RP A— B, then following RPs
such as B or A— B— (' would be removed, but RPs such as B— C would not (since it is not
a subset or superset of the first RP, and thus it presents additional information).

Given a CP, the RP with the highest score should indeed be the one most closely
associated to that CP, but it might not lead to the greatest number of items affected. This
is because the model only represents RP to CP association, not frequency. If an RP only
occurs once, and that item has a CP included in the model, then the RP will be strongly
associated with that CP, but it is probably not the most important error for the grammar
developer to fix. For example, say you want to find and fix rules causing items to be unable
to generate the original string. You might find that fixing the problem with the RP having
the highest score corrects fewer items than had you fixed those of the RP with the next
highest score. Both RPs could be valid errors, but one gives greater benefit for the time
invested in fixing the bug. To help the grammar developer decide the priority of problems

to fix, we also output the count of items observed with the given CP and RP.

5.4 Rule Association Results

The primary purpose of Egad is to aid a grammar developer in finding and fixing problems
in a grammar. The process of analyzing the profile and finding these problems is called
error mining. Here we explain how Egad accomplishes this task.

Table 5.3 lists the ten highest ranked RPs associated with items that could parse but
could not generate in Jacy. We could list the highest ranked rules for any set of item charac-
teristics, but, for fixing problems with generation, looking at ungenerable items yielded the
most low-hanging fruit. Some rules in Table 5.3 appear several times in different contexts.
We used some methods to decrease the redundancy, such as removing items subsuming or

subsumed by a previous RP, but clearly this could be improved.

! Available at http://search.cpan.org/~laye/AI-MaxEntropy-0.20/

36

Table 5.3: Top 10 RPs for ungenerable items

Score Count Rule Paths

1.4234 109 hf-complement-rule — quantify-n-lrule — compounds-rule

0.9601 54 hf-complement-rule — quantify-n-lrule — nominal-numcl-rule — head-
specifier-rule

0.7562 63 head-specifier-rule — hf-complement-rule — no-nspec — 7"

0.7397 62 hf-complement-rule — head-specifier-rule — hf-complement-rule — no-nspec

0.7391 22 hf-complement-rule — hf-adj-i-rule — quantify-n-lrule — compounds-rule

0.6942 36 hf-complement-rule — hf-complement-rule — to-comp-quotarg — 7 &7

0.6762 82 vstem-vend-rule — te-adjunct — 7 7C”

0.6176 26 hf-complement-rule — hf-complement-rule — to-comp-varg — ” &”

0.5923 36 hf-adj-i-rule — hf-complement-rule — quantify-n-lrule — nominal-numcl-rule

0.5648 62 quantify-n-Irule — compounds-rule — vn2n-det-lrule

In this list of ten problematic RPs, there are four unique problematic pieces of the

grammar represented: quantify-n-lrule (noun quantification), no-nspec (? no used in

some constructions of noun specification), to-comp-quotarg (& to quotative particle), and

te-adjunct (verb conjugation used to combine verbs, such as the 7 de in (16)).

(16)

R— %= A T T
booru-wo susun-de utsu
ball-Top advance-TE throw

“Hit the ball stepping forward.”

The extra rules listed in each RP show the context in which each problem occurs, and

this can be informative as well. For instance, because we see quantify-n-lrule used both

with the compounds-rule and nominal-numcl-rule, we can presume that the problem

resides mostly, if not entirely, with the quantify-n-1rule, rather than the other two.

What is interesting to note is that each RP listed does indeed contain the rule that

is problematic. In other words, while the top ten results do not cover a large spread of

problems, each RP covered does represent a problem — it does not mislead.

Further, the problems identified are not always lexically marked. quantify-n-lrule occurs

37

for all bare noun phrases (i.e. without determiners). This kind of error cannot be accurately
identified by using just word or POS n-grams, we need to use the actual parse tree. Another
example is with lexical distinctions that are made grammar-internally, but are not obvious
by just looking at the string or even POS tag. The @ no and & markers both represent
multiple lexical types in the grammar. Some examples of the former include genitive and
possessive markers, and a clausal complementizer, and examples of the latter include a
quotative marker (one for speech and another for thoughts), and a coordinating conjunction.
It would be difficult to single out which is causing the error when only looking at the surface
form or POS tags. Grammar-specific supertags could help narrow down the candidates, but
Egad, being aware of types internal to the grammar, can find and report the exact one

causing problems.
5.5 Summary

In this chapter I explained what rule paths are, how we build a model to associate rules to
characteristics, and how we use the model to find interesting associations. Rule paths are
non-branching n-grams of grammar rules taken from derivation trees. Egad’s model uses
these rule paths as features that predict classes of characteristics, and we use the model’s
scoring of each rule path to find those most highly associated with a certain characteristic.
Looking for rule paths with high scores for an undesirable characteristic allows the user to
find likely erroneous rules, and the count of occurences of those items helps the user find

the most important problems to fix.

38

Chapter 6

ERROR MINING

After Egad has characterized the items in a profile and associated paths of grammar
rules to specified patterns of characteristics, a grammar developer can use this output for
error mining. The first task is to specify which characteristics to find associated RPs for.
The second task is finding example sentences exhibiting those characteristics. The grammar
developer can use any information from the CP or derivation tree (including stems and

lexical identifiers) to find examples.

6.1 Mining Problematic Rules

When Egad builds a model of RPs associated to CPs, it scores the RPs according to how
predictive they are with regard to the user-provided CPs. That is, if the user only provides
two CPs, it will assign scores according to how well each RP predicts one or the other CP.
If there are three CPs, it will discriminate among the three. If no CPs are provided, it will
discriminate among all observed CPs in the corpus.

In general, the finer-grained the distinctions between CPs are made (e.g. by using all
CPs in the model), the less useful the results will be. While the CPs the RPs are associated
to will yield more specific information, the RPs will likely overfit to characteristics that are
not informative, reducing the score for each association. Also, when RPs representing the
same problem are separated across different characteristics, the user has to look in more
places to find the problem. For example, consider an RP that occurs often in irreproducible
items. In a model that only compares reproducible to irreproducible items (generalizing
over the other characteristics), this RP will be highly associated to irreproducible items. If,
however, the user built a model with all CPs, this RP may appear in items with different
CPs (e.g. irreproducible and paraphrasable, irreproducible and not paraphrasable), and the

RP might not be strongly associated to any of them. Even if it was strongly associated to

39

one or both CPs, the user now has to look in more than one place to see what is essentially
the same error.

For further examples, see Figures 6.1-6.5. Figure 6.1 simply compares generable to
ungenerable items, while Figure 6.2 looks at items that are reproducible or irreproducible.
Note that specifying that the items are parsable and generable is redundant and unnecessary,

but it might help the pattern be clearer to the user.

/00.. ————= i

Figure 6.2: Search patterns for items that are reproducible or irreproducible.

Figure 6.3 compares items that differ, or don’t, in semantics. Keep in mind that for the
model to work, the user must provide at least two patterns. Usually these patterns will
simply compare items where an individual characteristic is observed or not (as in this and
previous patterns), but it could compare totally different features or more than two patterns.
For example Figure 6.4 compares two patterns where a characteristic is observed in both
cases, but it is comparing parses to realizations. This works here because, unlike the other
characteristics, the well-formedness of semantics applies to both parses and realizations.

Also notice how the use of dashes is used to discriminate between parses and realizations.

/==1 ./
/-=-=0 ./

Figure 6.3: Search patterns for items that differ or don’t differ in semantics.

40

Figure 6.4: Search patterns for parsed and generated items that have non-net semantics.

Figure 6.5 has four patterns enumerating all possible values of reproducibility and para-
phrasability. Note that the ungenerable! characteristic is used instead of irreproducible and
not paraphrasable, as any realization is either a reproduction or a paraphrase (i.e. there is
no CP represented by /0011 ----- ./). While the CPs in Figure 6.5 are all unique and
mutually exclusive among the items, there might not be RPs that are strongly associated
to each one of them. This is an extended case of Figure 6.1, where instead of simply looking
an generable and nongenerable items, we separate those that are generable into different
subclasses. Such a set of patterns could be useful when trying to make items generate both

reproductions and paraphrases.

/01— -=nm- /
/0010 ----- /
/0001 ----- /
/0000 ----- /

Figure 6.5: Search patterns for items of all values of reproducibility and paraphrasability.

Besides the patterns the model is built on, the user should provide the value of n—the
maximum length of n-grams for rule paths. In our tests, most errors could be easily spotted
and fixed with only bigrams, but we were using 4-grams to build the model. We chose to
use 4-grams because our tests of the model had greater accuracy with the value of n being
4 rather than 2, and the time complexity of training the model was still acceptable. The

user should run some tests to find the optimal value for their grammar. Future versions

!The third and fourth value in this CP use the “inapplicable” character (-). Because the item did not
generate, Egad does not check whether it was reproducible or paraphrasable. We could also generalize
(e.g. with the dot character) for these, and it would match the same set of items, but it would be less clear
that the second two values are inapplicable.

41

of Egad will likely use the iterative training approach of Sagot and de La Clergerie (2006)
and the support for arbitrarily long n-grams described in de Kok et al. 2009. After these
changes have been made, the selection of n will no longer be relevant. See Chapter 2 for

more information on these approaches.

6.2 Item Searching

Once a grammar developer has found a problematic RP (from such as those reported in
Table 5.3 in Section 5.4), they may want to find examples of it in their corpus. The output
from the item characterization step of Egad places the item’s ID number, its CP, its surface
string, and its derivation tree on one line in a file, making it ideal for searching with popular
command-line tools like grep.

Because Egad outputs the full CP regardless of whether it is for a parse or a realization,
one can use the inapplicable character (“-”) as an anchor for a regular expression search,
and also as a way to limit the search to only generation or parse items. Figures 6.6-6.10

are a sample of grep searches that a user could make.

grep " -———— 1.... ."

Figure 6.6: grep search for realizations with different lexemes than the original.

grep " ---- .10.. ."

Figure 6.7: grep search for realizations with differing derivation trees, but the same set of
rules as the original.

grep " 0010 —-——-- M

Figure 6.8: grep search for items that are irreproducible and paraphrasable.

42

grep " 01-- ————- Lok o

Figure 6.9: grep search for ungenerable items containing the word ¢ kare “he”.

grep " --—-1 . .xte-adjunct"

Figure 6.10: grep search for realizations with differing MRSs and using te-adjunct lexemes.

6.3 Summary

I covered the details of the error mining process in this chapter. First, the user must
select patterns of item characteristics and the maximum size of the n-grams from which the
model will be built. After building the model, and selecting a problem to look at from the
results, the user can use search tools such as grep to find examples of that problem in their
corpus. Finding examples is important for helping the grammar developer understand and
reproduce the problem. By using this method of error mining, the grammar developer can

significantly reduce the time needed to find and categorize errors.

43

Chapter 7
GRAMMAR CHANGES

In this chapter, I go into some detail about the grammar fixes applied to Jacy as a
result of analyses obtained by Egad, showing the variety of problems that we were able to
identify. Egad also identified some issues with the ERG: both over-generation (an under-
constrained inflectional rule) and under-generation (sentences with the construction take

{care|charge|. ..} of were not generating.

7.1 Overgenerating Topic Markers

Jacy’s original analysis of punctuation such as commas, colons, and equals was such that
they were subtypes in the semantic hierarchy of the topic marker |3 wa. This caused the
punctuation to generate any time the original sentence used a wa-topic marker (as in (17)).
We found this problem by looking at realizations with different semantics than the parsed
sentence.

(17) a. o FhE X AR L LT &z

sono keikaku-wa gutai-ka shi-te ki-ta
that plan-ToP tangible-ization do-TE come-PERF

“The project is taking shape”

b. o Gh# . Hffk(L L TZE /=
c. To FhE @ BfRk(L L TE 2
d. €o Gl = Bk L L T & 2

Figure 7.1 shows the original semantic hierarchy for topic relations, where _wa_d_rel is
at the top. Figure 7.2 shows the updated version, where we introduced a new top-level
node, _wa_d_super (which is not the semantic predicate of any lexeme, unlike _wa_d_rel).
We restructured this part of Jacy so the punctuation characters were sister, rather than

daughter, types of the topic marker, and this fixed the problem. All are still treated as

44

topic relations, so there is no drop in parsing coverage and we still get accurate semantic

representations of input sentences, but we don’t have the overgeneration problem as before.

_wa_d_rel

T

_comma_d.rel _colon.drel _equal.d.rel

Figure 7.1: Original semantic hierarchy for topic relations in Jacy

_wa_d_super
_wa_d_rel _comma_d.rel _colon.drel _equal_d_rel

Figure 7.2: Updated semantic hierarchy for topic relations in Jacy

7.2 Incorrect Tense Constraints

(18) is an ungrammatical sentence found by looking at the sentences judged to have ill-

formed MRS semantics. The correct sentence would be as in (19).

(18) *#in> T ho/mI K by k2=
shizuka de atta ni inu ga hoeta
quiet de was in dog NOM barked

“The dog barked quietly”
(19) #mric Ky k2 7z

shizuka-ni inu-ga hoe-ta
quiet-ADV dog-NOM bark-PRF

“The dog barked quietly”

The problem was with the IZ ni particle not properly constraining its complement in

regards to tense. We constrained it to present-tense, which fixed these instances, but lost

45

the ability to accept items such as (20). Adding a new |Z ni particle for tenseless verbs like
i# U asobi “playing” regained the ability to accept these items.
(20) FfE oy HEL IS WK

kodomo-ga asobi-ni iku
child-NoM play-LOC go

“The child goes to play”

7.3 Unquantifiable Nouns

Some nouns, such as the compound noun in (15) or the nominalized numerical classifier in
(2), were able to be parsed, but could not be generated. The problem was that the rule
for quantifying the nouns, quantify-n-lrule, was a lexical rule, which is not supposed
to apply on phrasal nodes. The parser, however, will relax this constraint and allow it to
be accepted. The generator is not as permissive, and does not allow such a construction.

Figure 7.3 shows how the quantify-n-1rule was applied at a phrasal node during parsing.

quantify-n-lrule

compounds-rule

T

shashin wutsuri_1
HH F

Figure 7.3: Noun compound with quantification by lexical-rule

Having the quantification be a lexical rule was not only problematic for generation, but
was also an incorrect analysis, so we converted it to a phrasal rule: quantify-n-rule.
Doing so cleared up the issue and allowed these kinds of nouns to be quantified, and hence

generated.

7.4 Noun Specification with ¢ no

Japanese often uses @ no for noun specification. There were two types of this kind of

specification that were problematic for generation with Jacy. The first is when a noun is

46

specified by another noun, such as {1 ¥ @ & shuppatsu no aizu “departure signal”. The
second is when a noun is given a numeric count in such a construction, such as 40 A &
H5E 40 nin no seito “40 students”.! The @ no in both of these does not show up in the
MRS semantics, thus they are not automatically entered into the generator. We found this
problem by looking for ungenerable items, and fixed it by adding trigger rules that insert

these into the MRS if certain conditions are met (such as a noun with a numeric count).
7.5 Overgenerating Pronouns

As discussed in Sections 4.1.3 and 4.1.4, Jacy had problems with the generation of pronouns.
Japanese has many variations of pronouns, and if the semantics of a parsed pronoun match
any others, then they, too, will be generated. For example, Jacy has the following third-
person singular masculine pronouns: dp\ YD aitsu, %\ soitsu, i 4 daredare, HEE
darekare, #tZ 1 daresore, 1 kare, %X yatsu. This is even an incomplete list, as there are
kanji and hiragana versions of most of them. The list of first person singular pronouns is
even longer. The worst offender of this is H 7} jibun “self”, which in Jacy was unconstrained
for person, number, or gender, and would thus generate any pronoun.

The overgeneration of pronouns was causing the items to be irreproducible, because the
generator was generating the other variants before the original one (recall that we only look
at the first 5 realizations, not the full set). We therefore found this problem by looking at
irreproducible items.

There is also the issue of pragmatics with regard to pronouns. Japanese distinguishes
many words according to politeness, providing a means for the speaker to express honor
towards the adressee or to referrents in the situation described. Jacy encodes these dis-
tinctions in a separate feature to semantics: CONTEXT, because the pragmatic information
is not strictly truth conditional (Siegel, 2000b). Much of the over-generation comes from
the fact that this CONTEXT is not currently used by the generator. This is not an issue for
parsing, but strongly degrades generation. We have not yet implemented a fix for the issue

of pragmatic differences between pronouns.

!But note that this phrase is ambiguous. It could either mean “40 students” or “the student belonging
to 40 people.”

47

We did, however, make an initial fix to the problem of reflexive pronouns, allowing Jacy
to distinguish between standard pronouns .\ watashi “1 /me”) and reflexive pronouns (E)
Jibun “self”), by moving this information from pragmatics into the semantics. This change
fixed relatively few items (compared to problems with other pronouns), but it is interesting
to note that there were no items with H 4} jibun “self” that were reproducible, so it is an

important fix.
7.6 Summary

In this chapter I discussed some of the problems that we were able to find with Egad, and
how we fixed them. This list is not complete, but it shows the variety of problems Egad
could help us discover. We found items by looking at differences in semantics, ill-formed
semantics, ungenerability, and irreproducibility. Some changes affected a large number of
items, and other changes fixed serious, if relatively uncommon, problems. All of our changes
only required four weeks of grammar development time, and had significant effects to the

generation coverage, as described in Chapter 8.

48

Chapter 8
ANALYSIS

After fixing the most significant problems in Jacy (outlined in Chapter 7) as reported
by Egad, we obtained new statistics about the grammar’s coverage and characteristics. For
ease of comparison, we show the original Jacy statistics next to the updated statistics in
Tables 8.1 and 8.2, and also as bar charts in Figures 8.1-8.3. Both tables include the counts
of items where a characteristic was observed as well as percentages. We use the version
numbers from the Subversion repository in this chapter. Jacy 419 is the original version we

started with, and Jacy 441 is the updated version after our grammar changes.

8.1 Coverage Analysis

Table 8.1 describes general characteristics, so it considers every input item. The absolute
percentage (“abs”) is the percentage of items exhibiting a characteristic out of all input items
(in this case, 7,500), while the relative percentage (“rel”) uses the count of relevant items as
the denominator. Only parsable items are relevant when looking at generablity, and likewise

only generable items are relevant when looking at reproducibility or paraphrasability.

Table 8.1: Jacy’s improved general statistics

Jacy 419 Jacy 441

count abs rel count abs rel

Parsable 6,115 82% - 6,244 83% -
Generable 3,406 45% 56% 4,738 63% 76%
Reproducible 809 11% 24% 1,639 22% 35%
Paraphrasable 3,336 44% 98% 4,595 61% 9%

Consider Table 8.1. There were large gains in generation coverage — we nearly halved

49

the remaining under-generation. A large portion of this is due to our fix for quantifying
noun phrases (see Section 7.3). Our changes to improve generation also increased parsing
coverage by 1%, which is a 5.5% reduction of error. We doubled the absolute percentage
of reproducible items, which is relative increase of about 46% (24% to 35% of generable
items). For these reproductions, some are due to generating sentences that couldn’t gener-
ate previously, but another part is because we filtered out unwanted realizations, allowing
the reproduction to appear in the first 5 realizations. Regarding paraphrasable items, the
absolute percentage increased from 44% to 61%, but we see that the relative percentage ac-
tually dropped 1%. This is because paraphrasable items did not increase fully in proportion
to generable items. The relative drop in paraphrasable items coupled with the increase in

reproducible items is likely the effect of our efforts to reduce spurious overgeneration.
8.2 Realization Analysis

Table 8.2 shows statistics from comparisons between parses and all realizations, so the count
of all realizations is used as the denominator (note that this is different from the count of
generable items). For Jacy 419, the count of all realizations is 15,390. For Jacy 441, it is
19,793.

Table 8.2: Jacy’s improved comparative statistics

Jacy 419 Jacy 441

count % count %

Lexemes differ 13,852 90% 15,951 81%
Tree differs 11,122 72% 15,683 79%
Rules differ 7,928 52% 11,449 58%
String differs 14,518 94% 17,988 91%
MRS differs 1,539 10% 1,270 6%

Increasing the percentage of reproducible items is, intuitively, correlated with a drop

in the percentages of items with differing strings. We also noticed significant drops in the

50

percentage of items with different lexemes and MRS. Many of these surely are because of the
fixes of topic markers (see Section 7.1) and pronouns (see Section 7.5). There were increases
in items with differing trees and rules, despite the 1% relative drop in paraphrasable items,

and this, too, can be attributed to the large gain in generable items.
8.3 Concerning Paraphrases

One statistic we chose not to explore directly with Egad is the number of paraphrases
per paraphrasable item. We don’t provide this statistic to the user because the number of
realizations (including paraphrases) is not reliable.! Nevertheless, it is not difficult for the
user to figure out an approximation of this number with the output from the characterization
stage of Egad. Jacy 419, with 3,336 paraphrasable items and 14,518 paraphrases, has
about 4.4 paraphrases per paraphrasable item. Jacy 441, with 4,595 paraphrasable items
and 17,988 paraphrases, has around 3.9.

8.4 Summary

This chapter presented results from the analysis of our efforts to fix errors in the Jacy
grammar discovered by Egad. I presented an analysis of the change in coverage statistics,
showing how much generation coverage increased with a small amount of grammar-fixes. I
explained the changes to realization statistics, such as the proportion of realizations with
different semantics or derivation trees. Some statistics are not reported by Egad (as they
could be inaccurate), but can be approximated by the user with a little effort. I presented
the number of paraphrases per paraphrasable item as an example. Looking at these analyses,
we see that the grammar is now much better at generating (up to 63% from 45%) and is
better at reproducing the original string, which (given that we only look at 5 realizations

per item) is an indicator of a reduction of spurious overgenerations.

'Recall that if the generator runs out of memory or reaches the edge limit, no generations are produced.
Also, we are only looking at the first 5 generations, which means that the true number is not being
reported.

Bl jacy 419
100% [Jacy 443
90%
83
80% =
70%
63
60% o
50% 45 a4
40%
30% s
20%
11
10%
0%
Parsable Generable Reproducible Paraphrasable

Figure 8.1: Initial and updated absolute general statistics for Jacy

100%
90%
80% 76
70%
60% 56
50%
40% 35
30% 54
20%
10%
0%
Generable Reproducible Paraphrasable

Figure 8.2: Initial and updated relative general statistics for Jacy

100%

94
91
90% maa
80% = , 79
70%
60% 58
52
50%
40%
30%
20%
o 10-6
0%

Diff Lexemes Diff Tree Diff Rules Diff String Diff MRS

Figure 8.3: Initial and updated comparative statistics for Jacy

93

Chapter 9

CONCLUSION

I have described the background, methodology, implementation, and results of Egad,
and explained how we used its results to improve the Jacy grammar. Egad has now been
shown to be a useful tool for grammar developers, but that is not to say it is finished. In
this chapter I cover some ideas for future work to the system, then provide some concluding

remarks.

9.1 Future Work

We think it could be beneficial to analyze more characteristics of the grammars. With
more points of reference, a grammar developer can make even more informed decisions
about what problems to fix. In particular, we have considered adding characteristics for
performance-related factors, such as the amount of time or space needed to produce a parse
or realization. This could allow us to search for rules causing inefficiencies in the grammar.
In this case, perhaps a ratio of time/space to sentence length would be more appropriate.
We have also considered getting information about failed parses from the parser, such as
error messages or derivation tree fragments from partial parses. Lastly, we would like to try
replacing lexical ids (specific to a lexeme) with lexical types in the RPs, since all lexemes
of the same type should behave identically. Generalizing over all lexemes of the same type
could allow some erroneous lexical types to be noticed more easily by Egad.

We would like to improve the filtering of redundant RPs in the error-mining phase, as
there is still too much redundancy in the output. The work of Sagot and de La Clergerie
(2006) and de Kok et al. (2009) may be able to help with the filtering (or rather, more
intelligent ranking). A more long-term goal would allow Egad to analyze the internals of
the grammar and point out specific features within the grammar rules that are causing

problems.

54

Some of the errors detected by Egad have simple fixes, and we believe there is room to
explore methods of automatic error correction. In particular, ungenerable items that just
require new trigger rules could be automatically fixed if we could predict the context into
which the semantically empty lexical items need to be inserted.

We have not yet fixed all the errors identified by Egad. One of the high priority fixes
includes making all of the pragmatic information available to the generator — this would cut
out a lot of the over-generation. It would also make more interesting paraphrases possible:
for example, changing the text genre from formal to informal or vice-versa.

Lastly, in order to increase adoption of Egad, we plan to create a proper software pack-
age and distribute it to other researchers who could benefit from it. This would require
making the code more robust for running on different systems, documentation (including
installation and usage instructions), and some more usability enhancements (such as reduc-
ing or eliminating any grammar-specific files that Egad requires, and providing a graphical

user interface).
9.2 Availability

The Egad sources and documentation for the current version are available on the DELPH-
IN wiki at http://wiki.delph-in.net/moin/EgadTop. A bug tracker and code repository

for the next version of Egad are available at https://launchpad.net/egad.

9.3 Conclusion

We have introduced a system that characterizes the capabilities of a grammar by looking at
its parsing and generation output, identifies errors in implemented HPSG grammars, finds
and ranks the possible sources of those problems, and enables a grammar developer to easily
find occurences of these errors. This tool can greatly reduce the amount of time a grammar
developer would spend finding bugs, and helps them make informed decisions about which
bugs are best to fix. Using our system, we were able to improve Jacy’s absolute generation
coverage by 18% (45% to 63%), and double the absolute percentage of reproducible items

(from 11% to 22%), with only four weeks of grammar development.

95

BIBLIOGRAPHY

Timothy Baldwin, John Beavers, Emily M. Bender, Dan Flickinger, Ara Kim, and Stephan
Oepen. 2005. Beauty and the beast: What running a broad-coverage precision grammar
over the bnc taught us about the grammarand the corpus. Linguistic Fvidence: Empirical,

Theoretical, and Computational Perspectives, pages 49-70.

Emily M. Bender, Dan Flickinger, and Stephan Oepen. 2002. The grammar matrix: An
open-source starter-kit for the rapid development of cross-linguistically consistent broad-
coverage precision grammars. In Proceedings of the Workshop on Grammar Engineering
and Fvaluation at the 19th International Conference on Computational Linguistics, pages

8-14. Taipei, Taiwan.

Francis Bond, Eric Nichols, Darren Scott Appling, and Michael Paul. 2008. Improving sta-
tistical machine translation by paraphrasing the training data. In International Workshop

on Spoken Language Translation, pages 150-157. Honolulu.

Francis Bond, Stephan Oepen, Melanie Siegel, Ann Copestake, and Dan Flickinger. 2005.
Open source machine translation with DELPH-IN. In Open-Source Machine Translation:

Workshop at M'T Summit X, pages 15-22. Phuket.

Ulrich Callmeier. 2000. PET - a platform for experimentation with efficient HPSG processing
techniques. Natural Language Engineering, 6(1):99-108.

John Carroll and Stephan Oepen. 2005. High efficiency realization for a wide-coverage
unification grammar. LECTURE NOTES IN COMPUTER SCIENCE, 3651:165.

Ann Copestake. 2002. Implementing Typed Feature Structure Grammars. CSLI Publications.

Ann Copestake, Dan Flickinger, Carl Pollard, and Ivan A. Sag. 2005. Minimal Recursion

Semantics. An introduction. Research on Language and Computation, 3(4):281-332.

56

Daniél de Kok, Jiangiang Ma, and Gertjan van Noord. 2009. A generalized method for
iterative error mining in parsing results. In Grammar Engineering Across Frameworks

(GEAF 2009).

Markus Dickinson and Chong Min Lee. 2008. Detecting errors in semantic annotation. In
Proceedings of the Sizth International Language Resources and Evaluation (LREC’08).

Marrakech, Morocco.

Rebecca Dridan and Francis Bond. 2006. Sentence comparison using robust minimal recur-
sion semantics and an ontology. In Proceedings of the Workshop on Linguistic Distances,

pages 35-42. Sydney. URL http://www.aclweb.org/anthology/W/W06/W06-1106.

Dan Flickinger. 2000. On building a more efficient grammar by exploiting types. Natural
Language Engineering, 6(1):15-28. (Special Issue on Efficient Processing with HPSG).

Dan Flickinger. 2008. The English resource grammar. Technical Report 2007-7, LOGON,
http://www.emmtee.net/reports/7.pdf. (Draft of 2008-11-30).

Dan Flickinger, Alexander Koller, and Stafan Thater. 2005. A new well-formedness
criterion for semantics debugging. In Proceedings of the 12th International Confer-
ence on HPSG, page 129142. URL http://cslipublications.stanford.edu/HPSG/

6/abstr-hb.shtml.

Claire Gardent and Eric Kow. 2007. Spotting overgeneration suspects. In 11th Furopean
Workshop on Natural Language Generation, page 41.

Alexander Koller and Stefan Thater. 2005. Efficient solving and exploration of scope ambi-

guities. Interactive Poster and Demonstration Sessions, page 9.

Yuji Matsumoto, Kitauchi, Yamashita, Hirano, Matsuda, and Asahara. 2000. Nihongo

Keitaiso Kaiseki System: Chasen. http://chasen.naist.jp/hiki/ChaSen/.

Eric Nichols, Francis Bond, and Daniel Flickinger. 2005. Robust ontology acquisition from
machine-readable dictionaries. In Proceedings of the International Joint Conference on

Artificial Intelligence IJCAI-2005, pages 1111-1116. Edinburgh.

o7

Stephan Oepen and John Carroll. 2000. Performance profiling for grammar engineering.

Natural Language Engineering, 6(1):81-97.

Stephan Oepen, Dan Flickinger, and Francis Bond. 2004. Towards holistic grammar engi-
neering and testing — grafting treebank maintenance into the grammar revision cycle.
In Beyond Shallow Analyses — Formalisms and Statistical Modelling for Deep Analysis
(Workshop at IJCNLP-2004). Hainan Island. URL http://www-tsujii.is.s.u-tokyo.

ac.jp/bsa/.

Stephan Oepen, Erik Velldal, Jan Tore Lgning, Paul Meurer, and Victoria Rosen. 2007.
Towards hybrid quality-oriented machine translation. on linguistics and probabilities in
MT. In 11th International Conference on Theoretical and Methodological Issues in Ma-
chine Translation: TMI-2007, pages 144-153.

Martha Palmer, Dan Gildea, and Paul Kingsbury. 2005. The proposition bank: An anno-

tated corpus of semantic roles. Computational Linguistics, 31(1).

Carl Pollard and Ivan A. Sag. 1994. Head Driven Phrase Structure Grammar. University
of Chicago Press, Chicago.

Benoit. Sagot and Eric. de La Clergerie. 2006. Error mining in parsing results. In Annual

Meeting-Association For Computational Linguistics, volume 44, page 329.

Melanie Siegel. 2000a. HPSG analysis of Japanese. In Wolfgang Wahlster, editor, Verbmobil:
Foundations of Speech-to-Speech Translation, pages 265 —280. Springer, Berlin, Germany.

Melanie Siegel. 2000b. Japanese honorification in an HPSG framework. In 14th PACLIC,
pages 289-300. Tokyo.

Yasuhito Tanaka. 2001. Compilation of a multilingual parallel corpus. In Proceedings of
PACLING 2001, pages 265-268. Kyushu. (http://www.colips.org/afnlp/archives/
pacling2001/pdf/tanaka.pdf).

Kristina. Toutanova, Penka Markova, and Christopher Manning. 2004. The leaf projection

o8

path view of parse trees: Exploring string kernels for hpsg parse selection. In Proceedings

of EMNLP, pages 166—173.

Hans Uszkoreit. 2002. New chances for deep linguistic processing. In 19th International

Conference on Computational Linguistics: COLING-2002, pages XIV-XXVII. Taipei.

Gertjan van Noord. 2004. Error mining for wide-coverage grammar engineering. In Pro-
ceedings of the 42nd Annual Meeting on Association for Computational Linguistics. As-

sociation for Computational Linguistics Morristown, NJ, USA.

99

Appendix A
PROBLEMATIC CHARACTERISTICS

Here I describe a problem Egad had with detecting the similarity of derivation trees.
In order to fix this problem, we have considered reintroducing (or not removing, at least)
stems and lexical ids into the derivation trees during comparison.

Figures A.1-A.2 show two different trees that Egad judged to be the same. Both
sentences mean “The rain changed into snow.” The order of the arguments is reversed
in the second sentence, but it is a valid paraphrase. Egad failed to notice the difference
because it only looks at phrasal nodes, and in the Jacy grammar, both h*% kara “from”
and [Z ni “to” use the same phrasal rules to combine with their complements. While this
problem is not terribly common, it happens more often than we would like. In order to fix

this, we would have to allow the derivation tree comparisons to analyze lexical information.

60

utterance_rule-decl-finite

\
hf-adj-i-rule

hf-complement-rule hf-adj-i-rule
quantify-n-rule kara hf-complement-rule VP
‘uL(‘ 7’7“‘5 /\
| ‘ quantify-n-rule ni -z

i \ \

yuki I1Z
\
/g:l}‘r

Figure A.1: Derivation Tree for “Ny h*©5 H IC b > /27

utterance_rule-decl-finite

\
hf-adj-i-rule

hf-complement-rule hf-adj-i-rule

T

quantify-n-rule ni

| | hf-complement-rule VP
yuki [: /\ A
| quantify-n-rule kara b7z
yﬂj‘fr ‘ ‘
ame s
\

Figure A.2: Derivation Tree for “& |2 W 5 b > /27

